Typical Count Diagram Complete Traffic Counts

Traffic Counts

SIGNALS & GEOMETRICS SECTION
TRAFFIC ENGINEERING AND SAFETY SYSTEMS BRANCH
NORTH CAROLINA DEPARTMENT OF TRANSPORTATION

STD. NO.

11.0

SHEET 1 OF 3

7-04

Typical Count Diagram Estimated Traffic Counts

Year 2020 Projected Volumes

Traffic Counts

11.0

SIGNALS & GEOMETRICS SECTION
TRAFFIC ENGINEERING AND SAFETY SYSTEMS BRANCH
NORTH CAROLINA DEPARTMENT OF TRANSPORTATION

SHEET 2 OF 3

Conversion from Estimated ADT to Estimated DDHV – Example

Project Letting Date = 2000
Design Year = Letting Date + 5 years = 2005
D = 60%
DHV = 10%

STEP 1 Interpolate to find 2005 ADT. For the north leg, 55 + (92-55)(9/20) = 72

STEP 2 Convert to DDHV: (ADT)(DHV)(D) = DDHV. For the north leg, (7200)(.10)(.60) = 432

STEP 3 Determine through volumes by subtracting STEP 4 turning volume from total volume.

For the north leg, 432 - 90 - 150 = 192

STEP 4 Complete count diagram.

NOTES

- -ADT = Average Daily Traffic
- -DHV = Design Hour Volume
- -DDHV = Directional Design Hour Volume
- -D = Directional Split
- -Use the highest directional split for each movement. Do not attempt to determine the direction of the peak flow for both the morning and afternoon peak hours.
- -Because of the uncertainty of the data, a peak hour factor of 1.0 should be used when these peak hour volumes are used for analysis.

Traffic Counts

SIGNALS & GEOMETRICS SECTION
TRAFFIC ENGINEERING AND SAFETY SYSTEMS BRANCH
NORTH CAROLINA DEPARTMENT OF TRANSPORTATION

STD. NO.

11.0

SHEET 3 OF 3

7-04